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Exponential convergence rate of the harmonic heat flow

Ivo Slegers

Abstract. We consider the harmonic heat flow for maps from a compact
Riemannian manifold into a Riemannian manifold that is complete and of
non-positive curvature. We prove that if the harmonic heat flow converges
to a limiting harmonic map that is a non-degenerate critical point of the
energy functional, then the rate of convergence is exponential (in the L2

norm).
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1. Introduction. The harmonic heat flow was introduced by Eells and Samp-
son in [2]. They used it to prove one of the first general existence results for
harmonic maps between Riemannian manifolds. Since then, the harmonic heat
flow has been an important tool in many existence results for harmonic maps.
It has also been studied much as a subject of investigation in its own right.

Suppose that (M, g) and (N,h) are Riemannian manifolds and f : M → N
is a smooth map. The harmonic heat flow is an evolution equation on one-
parameter families of smooth maps (ft : M → N)t∈[0,∞) that continuously
deforms f into a harmonic map. The parameter t is often thought of as a time
parameter. The harmonic heat flow equation is

dft

dt
= τ(ft),

f0 = f.
(1)

Here τ(ft) is the tension field of ft (see Section 2). Eells and Sampson prove
in [2] (with contributions of Hartman in [4]) that if M is compact and N is
complete and has non-positive curvature, then a solution of Eq. (1) exists for
all t ≥ 0. Moreover, if the images of the maps ft stay within a compact subset
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of N , then the harmonic heat flow converges, for t → ∞, to a harmonic map
f∞ : M → N that is homotopic to f .

In this note, we prove that when the limiting map satisfies a certain non-
degeneracy condition (which will elaborated on in Section 2), then the rate of
convergence of the harmonic heat flow is exponential.

Theorem 1.1. Let (M, g) and (N,h) be Riemannian manifolds with M compact
and with N complete and of non-positive curvature. Let (ft)t∈[0,∞) be a solution
to the harmonic heat flow equation. Assume that the maps ft converge to a
limiting harmonic map f∞ : M → N , as t → ∞, and assume that f∞ is a
non-degenerate critical point of the Dirichlet energy functional. Then, there
exist constants a, b > 0 such that

∥
∥
∥
∥

dft

dt

∥
∥
∥
∥

L2(f∗
t TN)

≤ a · e−b·t

for all t ≥ 0. Moreover, the exponential decay rate (the constant b) depends
only on f∞.

The exponential convergence rate of the harmonic heat flow has been ob-
served before in several different settings. For example, in [8], Topping proved
that the harmonic heat flow for maps between 2-spheres converges exponen-
tially fast in L2 as t → ∞. Similarly, in [9], it is shown that the heat flow for
mappings from the unit disk in R

2 into closed Riemannian manifolds converges
exponentially fast in H1 when we assume that the Dirichlet energy along the
heat flow is small.

Our result shows that this exponential convergence behaviour is actually
present in a large class of examples. For instance, if (N,h) has negative cur-
vature, then any harmonic map into N that does not map into the image of
a geodesic is a non-degenerate critical point of the energy. Another example
is provided by equivariant harmonic maps mapping into symmetric spaces of
non-compact type. A result of Sunada ([7]) implies that such harmonic maps
are non-degenerate critical points of the energy if and only if they are unique
(see [6, Lemma 2.1]).

As a corollary to Theorem 1.1, we obtain that the Dirichlet energies along
the harmonic heat flow also converge exponentially fast. For a smooth map
f : (M, g) → (N,h), we denote by E(f) its Dirichlet energy (see Section 2).

Corollary 1.2. Let (ft)t∈[0,∞), f∞, and b > 0 be as in Theorem 1.1. Then there
exists a constant a′ > 0 such that, for all t ≥ 0, we have

|E(ft) − E(f∞)| ≤ a′ · e−2b·t.

2. Preliminaries. We briefly introduce the concepts related to harmonic maps
that we will need in our proof. We follow mostly the presentation given in [1]
(see also [2]).

Let (M, g) and (N,h) be Riemannian manifolds and assume that M is
compact. For any vector bundle E → M , we denote by Γk(E) the Banach
space of k-times continuously differentiable sections of E. For any smooth
map f : M → N , let us denote by ∇ the pullback connection on f∗TN → M
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induced by the Levi-Civita connection of N . By taking the tensor product
with the Levi-Civita connection on M , we obtain an induced connection on
the bundle T ∗M ⊗ f∗TN which we will also denote by ∇.

A smooth map f : (M, g) → (N,h) is a harmonic map if it is a critical point
of the Dirichlet energy

E(f) =
1
2

∫

M

‖df‖2 volg .

Here we consider df as a section of the bundle T ∗M ⊗ f∗TN that is equipped
with the metric induced by the metrics g and h. The tension field of f is the
smooth section of f∗TN that is defined as

τ(f) = trg ∇df =
m∑

i=1

(∇ei
df)(ei)

where (ei)m
i=1 is any local orthonormal frame of TM and ∇ is the connection

on T ∗M ⊗ f∗TN . A map f : (M, g) → (N,h) is harmonic if and only if its
tension field vanishes identically.

The metric g on M and the metric on f∗TN induced by the metric on N
give rise to the L2 inner product

〈s, s′〉L2(f∗TN) =
∫

M

〈s(m), s′(m)〉 volg(m)

for s, s′ ∈ Γ0(f∗TN). The space L2(f∗TN) is defined to be the completion of
Γ0(f∗TN) with respect to this inner product.

The Laplace operator induced by the pullback connection ∇ on f∗TN is
the operator Δ: Γ2(f∗TN) → Γ0(f∗TN) that is given by

Δs = − trg ∇2s = −
m∑

i=1

(∇2s)(ei, ei)

for s ∈ Γ2(f∗TN) and any (local) orthonormal frame (ei)m
i=1 of TM .

Definition 2.1. We define the Jacobi operator of a smooth map f : M → N to
be the second order differential operator that acts on sections of f∗TN as

Jf (s) = Δs − trg RN (s, df ·)df · = −
m∑

i=1

[

(∇2s)(ei, ei) + RN (s, df(ei))df(ei)
]

where s ∈ Γ2(f∗TN), RN is the curvature tensor1 of (N,h), and (ei)m
i=1 is any

(local) orthonormal fame of TM .

We can interpret the Jacobi operator as a densely defined operator

Jf : L2(f∗TN) → L2(f∗TN).

It is a linear elliptic and self-adjoint operator. Standard spectral theory for
such operators implies the following facts.

1We define the curvature tensor as R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z which

differs from the convention chosen in [1].
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Proposition 2.2. The Hilbert space L2(f∗TN) splits orthogonally into
eigenspaces of Jf . These eigenspaces are finite dimensional and consist of
smooth sections. The spectrum of Jf is discrete and consists of real numbers.
If (N,h) is non-positively curved, then the eigenvalues of Jf are non-negative.

Proof. See [10, Chapter IV] (cf. [1, Section 4]). It is proved in [1, Proposition
1.23] that Δ is a positive operator. If (N,h) is non-positively curved, then

− trg〈RN (s, df ·)df ·, s〉 = −
m∑

i=1

〈RN (s, df(ei))df(ei), s〉 ≥ 0

for any s ∈ Γ0(f∗TN) and hence it follows that the eigenvalues of Jf are
non-negative. �

When (N,h) has non-positive curvature, it follows that each Jf has a well-
defined lowest eigenvalue which we will denote by λ1(Jf ) ≥ 0. This quantity
is called the spectral gap of the operator Jf . Using the min–max theorem, the
value λ1(Jf ) can alternatively be characterised as

λ1(Jt) = min
s∈Γ2(f∗TN)

s �=0

〈Jfs, s〉L2(f∗TN)

‖s‖2
L2(f∗TN)

. (2)

If f is harmonic, then the second variation of the energy at f is given by

∇2E(f)(s, s′) =
∫

M

[〈∇s,∇s′〉 − trg〈Rn(s, df ·)df ·, s′〉] volg = 〈Jfs, s′〉L2(f∗TN)

for any s, s′ ∈ Γ2(f∗TN). We stress that this equation only holds when f is
harmonic. A harmonic map is a non-degenerate critical point of the energy
if the bilinear form ∇2E(f) is non-degenerate. This happens if and only if
ker Jf = 0. In the case that (N,h) has non-positive curvature, this is equivalent
to λ1(Jf ) > 0.

As mentioned in the introduction, the existence of a solution to the har-
monic heat flow equation is due to Eells and Sampson. We record the facts
relevant to our proof here in the following theorem. We denote by Ck(M,N)
the Banach manifold of k-times continuously differentiable maps from M to
N .

Theorem 2.3. Assume (M, g) is compact and (N,h) is complete and of non-
positive curvature. Let f : M → N be a smooth map. A solution (ft)t∈[0,∞) to
the harmonic heat flow equation (Eq. (1)) exists for all t ≥ 0 and the map

M × [0,∞) → N, (m, t) �→ ft(m),

is smooth. Moreover, if the image of this map is contained in a compact subset
of N , then the maps ft converge, for t → ∞, to a harmonic map f∞ in any
space Ck(M,N).

The existence and smoothness of the solution is proved in [2, Theorem 10.C,
p. 154 and Proposition 6.B, p. 135]. Note that Eells and Sampson prove these
theorems under an additional assumption involving restrictions on a choice
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of isometric embedding N → R
n. Hartman proved in [4, Assertion (A)] that

this assumption is redundant. Finally, the convergence statement for t → ∞
is proved in [4, Assertion (B)].

3. Continuity of the spectral gap. Our proof of Theorem 1.1 will rely on the
fact that if (ft)t∈[0,∞) is a solution to the harmonic heat flow equation, then
the associated family of Jacobi operators Jft

is (in a loose sense) a continuous
family of differential operators. The primary difficulty here is that these oper-
ators act on sections of different vector bundles. We deal with this problem in
Proposition 3.1 which will be the main tool in our proof.

Let us first introduce some notation. We will consider a family of smooth
maps (ft)t∈[0,1] and define F : M × [0, 1] → N as F (m, t) = ft(m). For each
t ∈ [0, 1], we denote Et = f∗

t TN and Jt = Jft
.

Proposition 3.1. Assume F : M × [0, 1] → N (as above) is continuous, each
ft : M → N is smooth, and [0, 1] → C3(M,N), t �→ ft, is continuous. Then,

lim inf
t→0

λ1(Jt) ≥ λ1(J0).

Remark 3.2. As we will see in the proof of this proposition, the statement is
easily generalised to lim inft→t0 λ1(Jt) ≥ λ1(Jt0) for t0 ∈ [0, 1] (the choice of
t0 = 0 is in no way special). This means that the function t �→ λ1(Jt) is lower
semicontinuous. Because we don’t need this full statement in our proof, we
will restrict ourselves, for notational convenience, to t0 = 0.

As mentioned before, our main difficulty is that the differential operators
Jt do not act on sections of the same vector bundle. To address this, we first
construct (local) homomorphisms between Et and E0 which will allow us to
locally identify these bundles.

Throughout this section, we will consider the vector bundles Et = f∗
t TN

as a subset of the larger vector bundle F ∗TN by identifying M with M ×
{t} ⊂ M × [0, 1]. Let us consider a chart U of M and a chart V of N such
that, for some ε > 0, the set U × [0, ε) is mapped into V by F . We will call
such charts adapted charts. To a pair of adapted charts we will associate, for
t ∈ [0, ε), homomorphisms ψt : Et|U → E0|U as follows. Let us denote by
(yα)n

α=1 the coordinates of the chart V ⊂ N . First, we note that (Eα)n
α=1,

with Eα = F ∗ ∂
∂yα , is a local frame of F ∗TN over U × [0, ε). Furthermore, the

sections Eα(·, t) provide a frame of Et|U for any fixed t ∈ [0, ε). If we write2 an
element v ∈ Et|U as v = vαEα(x, t) for some x ∈ U , then we define the map
ψt : Et|U → E0|U as

ψt(vαEα(x, t)) = vαEα(x, 0).

We note that, for t = 0, we have ψ0 = id, hence, by continuity, ψt is an
isomorphism for any t ∈ [0, ε) if we take ε > 0 small enough (after possibly
shrinking U).

Because M is compact, it can be covered by a finite set of adapted charts.
More precisely, there exists an ε > 0, a finite set of charts {Ũ1, . . . , Ũr} of M ,

2Throughout this text, we will use the Einstein summation convention.
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and charts {V1, . . . , Vr} of N such that F maps each Ũp × [0, ε) into Vp. Let
us denote by ψt,p : Et|Ũp

→ E0|Ũp
the homomorphisms associated to each pair

(Ũp, Vp) of adapted charts.
Before we proceed to the proof of Proposition 3.1, we will first use our

choice of adapted charts to define Ck norms on the spaces Γk(Et) which will
be particularly well-adjusted to our arguments. Fix a p ∈ {1, . . . , r}, let (xi)m

i=1

be the coordinates of the chart Ũp ⊂ M , and let (yα)n
α=1 be the coordinates

of the chart Vp ⊂ N . We set, as before, Eα = F ∗ ∂
∂yα . By shrinking the open

sets Ũp slightly, we can find precompact open subsets Up ⊂ Ũp such that the
sets {Up}r

p=1 still cover M . A section s ∈ Γk(Et) can, locally on Ũp, be written
as s = sαEα(·, t). Using this notation, we define, for k ∈ N and t ∈ [0, ε), the
seminorms ‖·‖Γk(Up;Et)

on Γk(Et) as

‖s‖Γk(Up;Et)
= sup

{∣
∣
∣
∣

∂|μ|

∂xμ
sα(x)

∣
∣
∣
∣
: x ∈ Up, 1 ≤ α ≤ n, |μ| ≤ k

}

.

Here μ = (μ1, . . . , μm) is a multi-index and ∂|μ|
∂xμ = ∂μ1

∂x
μ1
1

· · · ∂μm

∂xμm
m

. This expres-

sion is finite because Up is compact in Ũp. We now define the norm ‖·‖Γk(Et)

on Γk(Et) as

‖s‖Γk(Et)
= max

p=1,...,r
‖s‖Γk(Up;Et)

.

These norms induce the usual Banach space structure on the spaces Γk(Et).
For any of the sets Up ⊂ M , with p = 1, . . . , r, we will denote by Γk(Up;Et)

the Banach space of sections of Et over Up that extend to k-times differentiable
sections over some open set containing Up. On this space, ‖·‖Γk(Up;Et)

defines
a Banach norm.

By inspecting the definition of the (local) homomorphisms ψt,p : Et|Ũp
→

E0|Ũp
and the seminorms ‖·‖Γk(Up;Et)

, we observe the following. For all k ∈ N

and t ∈ [0, ε), if s ∈ Γk(Up;Et) is a section, then

‖ψt,p(s)‖Γk(Up;E0)
= ‖s‖Γk(Up;Et)

. (3)

We will use this compatibility between the homomorphisms and seminorms in
our proof of Proposition 3.1.

Proof of Proposition 3.1. Let the adjusted charts (Ũp, Vp), associated homo-
morphisms ψt,p : Et|Ũp

→ E0|Ũp
, and choice of precompact open sets Up ⊂ Ũp

be as above.
Let us denote λ = lim inft→0 λ1(Jt). There exists a sequence (tu)u∈N ⊂

[0, ε) such that tu → 0 as u → ∞ and

lim
u→∞ λ1(Jtu

) = λ = lim inf
t→0

λ1(Jt).

It follows from Proposition 2.2 that, for each u ∈ N, there exists a smooth
eigensection su ∈ Γ∞(Et) such that Jtu

su = λ1(Jtu
) · su. We normalise such

that ‖su‖Γ0(Et)
= 1 for all u ∈ N.
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For p = 1, . . . , r, we denote σu,p = ψtu,p(su|Ũp
) ∈ Γ∞(Ũp;E0). Our proof

will rely on the following two lemmas.

Lemma 3.3. There exists a subsequence (uk)k∈N ⊂ N such that, for each p =
1, . . . , r, the sequence (σuk,p)k∈N converges in Γ2(Up;E0) to a limiting section
σp ∈ Γ2(Up;E0). At least one of these limiting sections is not the zero section.
Moreover, for all p, q = 1, . . . , r, the sections σp and σq coincide on Up ∩ Uq.

In the second lemma, we consider the operator J0 restricted to the open
sets Up. Since the Jacobi operators Jt are ordinary differential operators, it
follows that the value of Jts at a point in M depends only on the germ of the
section s at that point. Hence, we can apply Jt also to sections that are not
globally defined.

Lemma 3.4. Consider the limiting sections σp ∈ Γ2(Up;E0) as defined in
Lemma 3.3. For all p = 1, . . . , r, we have on Up that

J0σp = λ · σp.

We postpone the proof of these two lemmas and first finish proof of Propo-
sition 3.1.

It follows from the last statement of Lemma 3.3 that we can patch the
limiting sections σp together to obtain a well-defined global limiting section
σ ∈ Γ2(E0). More precisely, we let σ ∈ Γ2(E0) be the section that on each
Up ⊂ M is given by σ|Up

= σp. Note that the sets Up cover M and that, by
Lemma 3.3, the section is well-defined on intersections Up ∩ Uq. Because at
least one of the limiting sections σp does not vanish, it follows that σ is not
the zero section.

Now Lemma 3.4 implies that σ is an eigensection of J0. Namely, we have

J0σ = λ · σ

because this holds on each subset Up ⊂ M . It follows that λ is an eigenvalue
of J0 and hence that

λ1(J0) ≤ λ = lim inf
t→0

λ1(Jt).

�
We now prove Lemmas 3.3 and 3.4. The proofs of these lemmas will rely

on the fact that, in suitably chosen local coordinates, the coefficients of the
differential operators Jt depend continuously on t.

Let us first introduce the necessary notation. Let (Ũp, Vp) be a pair of
adapted charts as before, (xi)m

i=1 the coordinates on Ũp, and (yα)n
α=1 the coor-

dinates on Vp. We put again Eα = F ∗ ∂
∂yα . The Jacobi operators Jt are second

order differential operators. Hence, in local coordinates, they can be written
as

Jts(x) =
{

Aij,γ
α (x, t)

∂2sα

∂xixj
(x) + Bi,γ

α (x, t)
∂sα

∂xi
(x) + Cγ

α(x, t)sα(x)
}

Eγ(x, t),

(4)
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where Aij,γ
α , Bi,γ

α , Cγ
α : Ũp × [0, ε) → R are suitable coefficient functions. Here

we write any section s of Et over Ũp as s = sαEα(·, t).
Our proofs of Lemmas 3.3 and 3.4 are based on the following observation.

Lemma 3.5. Let U ′ ⊂ Ũp be a precompact open subset. For all i, j = 1, . . . , m
and α, γ = 1, . . . , n, we have that the maps t �→ Aij,γ

α (·, t), t �→ Bi,γ
α (·, t), and

t �→ Cγ
α(·, t) are continuous mappings from [0, 1] into C1(U ′).

Proof. Denote by gij the coefficients of the inverse of the metric tensor g with
respect to the coordinates (xi)m

i=1 and by MΓk
ij the Christoffel symbols of the

Levi-Civita connection of (M, g). The Jacobi operators are expressed locally
as

Jts = Δs − trg RN (s, df ·)df ·

= −gij

{

∇ ∂
∂xi

∇ ∂
∂xj

s − MΓk
ij∇ ∂

∂xk
s + RN

(

s,
∂f

∂xi

)
∂f

∂xj

}

,

with s ∈ Γ2(Up;Et). Recall that ∇ is the pullback connection on the bundle
Et = f∗

t TN . Let us denote by NΓγ
αβ the Christoffel symbols of the Levi-Civita

connection of (N,h) on the chart Vp. Then, for any s = sαEα(·, t) ∈ Γ1(Ũp;Et),
we can write the pullback connection as

∇ ∂
∂xi

s(x) =
∂sα

∂xi
(x)Eα(x, t) + sα(x)

∂fβ
t

∂xi
(x) · NΓγ

αβ(ft(x)) · Eγ(x, t).

The coefficient functions Aij,γ
α , Bi,γ

α , Cγ
α can be calculated by filling in this

expression for the connection ∇ into the local expression for the Jacobi oper-
ators. It follows that these functions can be expressed entirely in terms of the
quantities

gij ,
∂fβ

t

∂xi
, MΓk

ij , (R
N )δ

αβγ ◦ ft, and NΓγ
αβ ◦ ft

and their first derivatives. Here (RN )δ
αβγ denote the coefficients of the Riemann

curvature tensor RN in the coordinates on Vp. As a result, in the expression
for the coefficient functions, only spatial derivatives of the functions ft up to
second order appear. The statement of the lemma now follows immediately
from our assumption that [0, 1] → C3(M,N), t �→ ft, is a continuous mapping.

�

We can now prove Lemma 3.3.

Proof of Lemma 3.3. Fix a p ∈ {1, . . . , r}. Let us write su = sα
uEα(·, t) on Ũp.

Because each su is an eigensection of the Jacobi operator Jtu
, we find that

they satisfy

[Jtu
− λ1(Jtu

)] su = 0. (5)

Hence, on Ũp the coefficients (sα
u)n

α=1 satisfy a second order linear elliptic
system of differential equations. We will use Schauder estimates to obtain a
uniform bound on the C2,μ-Hölder norm of these coefficients. To this end, we
will apply the results of [5].
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The system of differential equations in Eq. (5) is elliptic because the Jacobi
operators are elliptic differential operators. The bounds on the Hölder norms
of solutions to this equation that are provided by Morrey’s results depend on a
uniform ellipticity constant which in Morrey’s paper is denoted M (defined in
[5, Equation 1.6]). This constant depends only on the coefficients of the second
order part of the system in Eq. (5). That is, it depends only on the coefficients
Aij,γ

α . Because, by Lemma 3.5, these coefficient functions depend continuously
on t, it follows that the constant M can be taken uniformly over u ∈ N.

Take a precompact open U ′ ⊂ Ũp such that Up ⊂ U ′ ⊂ U ′ ⊂ Ũp. The
coefficients of the system of differential equations in Eq. (5) are a combination
of the coefficients of Jtu

and the constant term λ1(Jtu
). It follows from Lemma

3.5 that the C0,μ-Hölder norms (even C1 norms) of the coefficients of Jtu
can

be bounded uniformly in u. The constant term λ1(Jtu
) can also be bounded

uniformly in u since the sequence (λ1(Jtu
))u∈N is convergent. So the coefficients

of the system of differential equations in Eq. (5) have uniformly (in u) bounded
C0,μ-Hölder norms. Moreover, because we normalised the sections su such that
‖su‖Γ0(Et)

= 1, it follows that the C0 norm (and hence also the L2 norm) of
the coefficients sα

u is also bounded uniformly in u. We now apply [5, Theorem
4.7] (with G = U ′, G1 = Up, in the notation of that paper) to conclude that
on Up the C2,μ-Hölder norms of the coefficients sα

u are uniformly bounded in
u.

We recall the notation σu,p = ψtu,p(su|Ũp
). It follows from the definition of

the homomorphisms ψt,p that su and σu,p have the same coefficients on Ũp.
Namely, if we write σu,p = σα

u,pEα(·, 0), then sα
u = σα

u,p for α = 1, . . . , n. Hence,
also the C2,μ-Hölder norms of the coefficients σα

u,p are uniformly bounded. It
now follows from the Arzelà-Ascoli theorem that there exists a subsequence of
(σu,p)u∈N that converges in Γ2(Up;E0) to a limiting section. We denote this
limiting section by σp. By choosing subsequent refinements of the subsequence,
we can arrange for this to hold for each p = 1, . . . , r. We denote the indices of
this subsequence by (uk)k∈N ⊂ N.

We now prove that it is not possible that all limiting sections σp vanish
identically. If this was the case, and all sections σp vanish, then this would
imply ‖σuk,p‖Γ0(Up;E0)

→ 0 as k → ∞ for all p = 1, . . . , r. However, this
contradicts that, for all u ∈ N, we have, by Eq. (3), that

max
p=1,...,r

‖σu,p‖Γ0(Up;E0)
= max

p=1,...,r
‖su‖Γ0(Up;Et)

= ‖su‖Γ0(Et)
= 1.

Finally, we prove the last statement of the lemma. Let (Ũp, Vp) and (Ũq, Vq)
be two pairs of adapted charts with corresponding local homomorphisms ψt,p

and ψt,q. Recall that the maps ψt,p : Et|Ũp
→ E0|Ũp

are isomorphisms for t

small enough. It can be easily seen from the definition of these homomorphisms
that, on the compact set Up ∩ Uq, the maps

ψt,q ◦ ψ−1
t,p : E0|Up∩Uq

→ E0|Up∩Uq
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converge uniformly to the identity map as t → 0. It follows that

σp|Up∩Uq
= lim

k→∞
ψtuk

,p(suk
|Up∩Uq

)

= lim
k→∞

ψtuk
,q ◦ ψ−1

tuk
,p ◦ ψtuk

,p(suk
|Up∩Uq

)

= lim
k→∞

ψtuk
,q(suk

|Up∩Uq
)

= σq|Up∩Uq
,

where the limits are taken in Γ0(Up ∩ Uq;E0). �

We finish this section with the proof of Lemma 3.4.

Proof of Lemma 3.4. Fix a p ∈ {1, . . . , r}. Let (Ũp, Vp) be a pair of adapted
charts and let the homomorphisms ψt,p and the frame (Eα)n

α=1 be as before.
We claim that

‖ψt,p ◦ Jt − J0 ◦ ψt,p‖op → 0 as t → 0. (6)

Here, ‖·‖op is the operator norm on the space of bounded linear operators
from Γ2(Up;Et) to Γ0(Up;E0) (equipped with the norms ‖·‖Γ2(Up;Et)

and
‖·‖Γ0(Up;E0)

respectively).
We denote

aij,γ
α (x, t) = Aij,γ

α (x, t) − Aij,γ
α (x, 0),

bi,γ
α (x, t) = Bi,γ

α (x, t) − Bi,γ
α (x, 0),

cγ
α(x, t) = Cγ

α(x, t) − Cγ
α(x, 0).

Then, for a section s = sαEα(·, t) ∈ Γ2(Up;Et), we have

[ψt,p ◦ Jt − J0 ◦ ψt,p]s(x)

=
{

aij,γ
α (x, t)

∂2sα

∂xixj
(x) + bi,γ

α (x, t)
∂sα

∂xi
(x) + cγ

α(x, t)sα(x)
}

Eα(x, 0).

From this expression, it follows that

‖ψt,p ◦ Jt − J0 ◦ ψt,p‖op ≤
∑

i,j,α,γ

∥
∥aij,γ

α

∥
∥

C0(Up)
+

∑

i,α,γ

∥
∥bi,γ

α

∥
∥

C0(Up)

+
∑

α,γ

‖cγ
α‖C0(Up) .

Our claim now immediately follows from the results of Lemma 3.5.
We use the notation (uk)k∈N and σu,p as in Lemma 3.3. From that lemma,

it follows that σuk,p → σp in Γ2(Up;E0). We use this to find

J0σp = lim
k→∞

J0σuk,p = lim
k→∞

J0ψtuk
,p(suk

|Up
).

From Eq. (6),it follows that

J0σp = lim
k→∞

J0ψtuk
,p(suk

|Up
) = lim

k→∞
ψtuk

,p(Jtuk
suk

|Up
).
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Here we used that ‖suk
‖Γ2(Up;Et)

= ‖σuk
‖Γ2(Up;E0)

remains bounded uniformly
in k. Finally, using the fact that the sections su are eigensections of the oper-
ators Jtu

gives

J0σp = lim
k→∞

ψtuk
,p(Jtuk

suk
|Up

) = lim
k→∞

λ(Jtuk
) · ψtuk

,p(suk
|Up

) = λ · σp

because, by definition, λ = limu→∞ λ1(Jtu
). �

4. Proof of Theorem 1.1. Our proof of Theorem 1.1 will rely on the fact that
the Jacobi operator of the maps ft appears in the evolution equation for the
quantity τ(ft). Recall the notation Et = f∗

t TN .

Lemma 4.1. Assume the family of maps (ft)t∈[0,∞) satisfies the harmonic heat
flow equation. Then,

1
2

d

dt
‖τ(ft)‖2

L2(Et)
= −〈Jft

τ(ft), τ(ft)〉L2(Et).

Proof. Assume (xi)m
i=1 are Riemannian normal coordinates around a point

x ∈ M . In the following calculation, we will consider the expression ∂ft

∂xα as a
local section of f∗

t TN . Because we are working in normal coordinates around
x, we have that

τ(ft)|x = trg ∇df |x = ∇ ∂
∂xi

(
∂f

∂xi

) ∣
∣
∣
x
.

We use this to find that, at the point x and for any t ≥ 0, we have

∇ ∂
∂t

τ(ft) = ∇ ∂
∂t

(

∇ ∂
∂xi

(
∂f

∂xi

))

= RN

(
∂f

∂t
,

∂f

∂xi

)
∂f

∂xi
+ ∇ ∂

∂xi
∇ ∂

∂xi

(
∂f

∂t

)

= −Δτ(ft) + trg RN (τ(ft), df ·)df · = −Jft
τ(ft).

To get the second equality, we used that ∇ ∂
∂t

∂f
∂xi = ∇ ∂

∂xi

∂f
∂t (see [1, p. 5]).

Because x ∈ M was arbitrary, we conclude that his equality holds everywhere.
We use this to find that

1
2

d

dt
‖τ(ft)‖2

L2(Et)
= 〈∇ ∂

∂t
τ(ft), τ(ft)〉L2(Et) = −〈Jft

τ(ft), τ(ft)〉L2(Et).

�

We can now give a proof of Theorem 1.1.

Proof of Theorem 1.1. We apply Proposition 3.1 to the family of maps
(ft)t∈[0,∞]. For this, we pick some homeomorphism between [0,∞] and [0, 1]
(mapping ∞ to 0) so we can view the heat flow as a family of maps (ft)t∈[0,1]

indexed by t ∈ [0, 1]. It then follows from Theorem 2.3 that this family of maps
satisfies the assumptions of Proposition 3.1. From this proposition, it follows
that

lim inf
t→∞ λ1(Jft

) ≥ λ1(Jf∞).



660 I. Slegers Arch. Math.

By assumption, f∞ is a non-degenerate critical point of the energy so λ1(Jf∞)
> 0. Put b = λ1(Jf∞)/2 > 0. Then, for t ≥ t0 large enough, we have λ1(Jft

) ≥
b. Using Lemma 4.1 and Eq. (2), we see that for such t ≥ t0,

d

dt
‖τ(ft)‖2

L2(Et)
= −2〈Jft

τ(ft), τ(ft)〉L2(Et) ≤ −2b · ‖τ(ft)‖2
L2(Et)

.

Grönwalls’s inequality ([3]) yields that

‖τ(ft)‖2
L2(Et)

≤ ‖τ(ft0)‖2
L2(Et0 ) · e−2b·t

for t ≥ t0. So if we pick a > 0 large enough, then
∥
∥
∥
∥

dft

dt

∥
∥
∥
∥

L2(Et)

= ‖τ(ft)‖L2(Et)
≤ a · e−b·t

for all t ≥ 0. �

We end with the proof of Corollary 1.2.

Proof of Corollary 1.2. The evolution of the energy E(ft) along the harmonic
heat flow is governed by the equation

d

dt
E(ft) = −

∫

M

‖τ(ft)‖2 volg = −
∥
∥
∥
∥

dft

dt

∥
∥
∥
∥

2

L2(Et)

(see [2, §6.C]). Applying the estimate of Theorem 1.1 gives

|E(ft) − E(f∞)| =

∞∫

t

∥
∥
∥
∥

dft

dt

∥
∥
∥
∥

2

L2(Et)

dt ≤ a ·
∞∫

t

e−2b·tdt = a′ · e−2b·t

with a′ = a/(2b). �
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